
UNIT III

CONTROL FLOW, FUNCTIONS

Conditionals: Boolean values and operators, conditional (if), alternative (if-else),

chained conditional (if-elif-else); Iteration: state, while, for, break, continue, pass;
Fruitful functions: return values, parameters, scope: local and global, composition,

recursion; Strings: string slices, immutability, string functions and methods, string
module; Lists as arrays. Illustrative programs: square root, gcd, exponentiation, sum the
array of numbers, linear search, binary search.

BOOLEAN VALUES:

Boolean:
 Boolean data type have two values. They are 0 and 1.

 0 represents False

 1 represents True

 True and False are keyword.

Example:

>>> 3==5
False
>>> 6==6
True
>>> True+True
2
>>> False+True
1
>>> False*True
0

OPERATORS:

 Operators are the constructs which can manipulate the value of operands.

 Consider the expression 4 + 5 = 9. Here, 4 and 5 are called operands and + is called operator.

Types of Operators:

1. Arithmetic Operators
2. Comparison (Relational) Operators
3. Assignment Operators
4. Logical Operators
5. Bitwise Operators
6. Membership Operators
7. Identity Operators

Arithmetic operators:

They are used to perform mathematical operations like addition, subtraction,
multiplication etc.

Operator Description Example

 a=10,b=20

+ Addition Adds values on either side of the operator. a + b = 30

- Subtraction Subtracts right hand operand from left hand operand. a – b = -10

* Multiplication Multiplies values on either side of the operator a * b = 200

/ Division Divides left hand operand by right hand operand b / a = 2

% Modulus Divides left hand operand by right hand operand and b % a = 0

 returns remainder

** Exponent Performs exponential (power) calculation on a**b =10 to the

 operators power 20

// Floor Division - The division of operands where the 5//2=2

 result is the quotient in which the digits after the

 decimal point are removed

Comparison (Relational) Operators:
 Comparison operators are used to compare values.

 It either returns True or False according to the condition.

Operator Description Example

 a=10,b=20

== If the values of two operands are equal, then the condition (a == b) is not

 becomes true. true.

!= If values of two operands are not equal, then condition becomes (a!=b) is true

 true.

> If the value of left operand is greater than the value of right (a > b) is not

 operand, then condition becomes true. true.

< If the value of left operand is less than the value of right (a < b) is true.
 operand, then condition becomes true.

>= If the value of left operand is greater than or equal to the value (a >= b) is not

 of right operand, then condition becomes true. true.

<= If the value of left operand is less than or equal to the value of (a <= b) is

 right operand, then condition becomes true. true.

Assignment Operators:

Assignment operators are used in Python to assign values to variables.

Operator Description Example

= Assigns values from right side operands to left c = a + b assigns

 side operand value of a + b into c

+= Add AND It adds right operand to the left operand and c += a is equivalent

 assign the result to left operand to c = c + a

-= Subtract AND It subtracts right operand from the left operand c -= a is equivalent

 and assign the result to left operand to c = c - a

*= Multiply AND It multiplies right operand with the left operand c *= a is equivalent

 and assign the result to left operand to c = c * a

/= Divide AND It divides left operand with the right operand and c /= a is equivalent

 assign the result to left operand to c = c / ac /= a is

 equivalent to c = c

 / a

%= Modulus AND It takes modulus using two operands and assign c %= a is

 the result to left operand equivalent to c = c

 % a

**= Exponent AND Performs exponential (power) calculation on c **= a is

 operators and assign value to the left operand equivalent to c = c

 ** a

//= Floor Division It performs floor division on operators and c //= a is

 assign value to the left operand equivalent to c = c

 // a

 Logical Operators:

 Logical operators are and, or, not operators.

Bitwise Operators:

Let x = 10 (0000 1010 in binary) and y = 4 (0000 0100 in binary)

Membership Operators:

 Evaluates to find a value or a variable is in the specified sequence of string, list,

tuple, dictionary or not.

 To check particular element is available in the list or not.

 Operators are in and not in.

Haseeb
Highlight

Haseeb
Sticky Note
repeatation

Example:

x=[5,3,6,4,1]

>>> 5 in x
True
>>> 5 not in x
False

Identity Operators:

They are used to check if two values (or variables) are located on the same part of
the memory.

Example

x = 5

y = 5

a = 'Hello'
b = 'Hello'

print(x is not y) // False

print(a is b)//True

CONDITIONALS
 Conditional if

 Alternative execution- if… else

 Chained if…elif…else

 Nested if….else

 Inline if

Conditional (if):

Conditional (if) is used to test a condition, if the condition is true the statements
inside if will be executed.

syntax:

Flowchart:

Example:

1. Program to provide flat rs 500, if the purchase amount is greater than 2000.
2. Program to provide bonus mark if the category is sports.

Program to provide flat rs 500, if the purchase amount output

is greater than 2000.

purchase=eval(input(“enter your purchase amount”)) enter your purchase

if(purchase>=2000): amount

purchase=purchase-500 2500

print(“amount to pay”,purchase) amount to pay

 2000

Program to provide bonus mark if the category is output

sports

m=eval(input(“enter ur mark out of 100”)) enter ur mark out of 100

c=input(“enter ur categery G/S”) 85

if(c==”S”): enter ur categery G/S

m=m+5 S

print(“mark is”,m) mark is 90

Alternative execution (if-else)

In the alternative the condition must be true or false. In this else statement can be
combined with if statement. The else statement contains the block of code that executes
when the condition is false. If the condition is true statements inside the if get executed
otherwise else part gets executed. The alternatives are called branches, because they are
branches in the flow of execution.

syntax:

Flowchart:

Examples:

1. odd or even number
2. positive or negative number
3. leap year or not

4. greatest of two numbers

5. eligibility for voting

Odd or even number Output

n=eval(input("enter a number")) enter a number4

if(n%2==0): even number

print("even number")

else:

print("odd number")

positive or negative number Output

n=eval(input("enter a number")) enter a number8

if(n>=0): positive number

print("positive number")

else:

print("negative number")

leap year or not Output

y=eval(input("enter a yaer")) enter a yaer2000

if(y%4==0): leap year

print("leap year")

else:

print("not leap year")

greatest of two numbers Output

a=eval(input("enter a value:")) enter a value:4

b=eval(input("enter b value:")) enter b value:7

if(a>b): greatest: 7

print("greatest:",a)

else:

print("greatest:",b)

eligibility for voting Output

age=eval(input("enter ur age:")) enter ur age:78

if(age>=18): you are eligible for vote

print("you are eligible for vote")

else:

print("you are eligible for vote")

Haseeb
Highlight

Chained conditionals(if-elif-else)

 The elif is short for else if.

 This is used to check more than one condition.

 If the condition1 is False, it checks the condition2 of the elif block. If all the

conditions are False, then the else part is executed.

 Among the several if...elif...else part, only one part is executed according to

the condition.

 The if block can have only one else block. But it can have multiple elif blocks.

 The way to express a computation like that is a chained conditional.

syntax:

Flowchart:

Example:

1. student mark system
2. traffic light system
3. compare two numbers

4. roots of quadratic equation

 student mark system Output

 mark=eval(input("enter ur mark:")) enter ur mark:78

 if(mark>=90): grade:B

 print("grade:S")

 elif(mark>=80):

 print("grade:A")

 elif(mark>=70):

 print("grade:B")

 elif(mark>=50):

 print("grade:C")

 else:

 print("fail")

 traffic light system Output

 colour=input("enter colour of light:") enter colour of light:green

 if(colour=="green"): GO

 print("GO")

 elif(colour=="yellow"):

 print("GET READY")

 else:

 print("STOP")

 compare two numbers Output

 x=eval(input("enter x value:")) enter x value:5

 y=eval(input("enter y value:")) enter y value:7

 if(x == y): x is less than y

 print("x and y are equal")

 elif(x < y):

 print("x is less than y")

 else:

 print("x is greater than y")

 Roots of quadratic equation output

 a=eval(input("enter a value:")) enter a value:1

 b=eval(input("enter b value:")) enter b value:0

 c=eval(input("enter c value:")) enter c value:0

 d=(b*b-4*a*c) same and real roots

 if(d==0):

 print("same and real roots")

 elif(d>0):

 print("diffrent real roots")

 else:

print("imaginagry roots")

Nested conditionals

One conditional can also be nested within another. Any number of condition can be

nested inside one another. In this, if the condition is true it checks another if condition1.

If both the conditions are true statement1 get executed otherwise statement2 get

execute. if the condition is false statement3 gets executed

Syntax:

Flowchart:

Example:

1. greatest of three numbers

2. positive negative or zero

greatest of three numbers output

a=eval(input(“enter the value of a”)) enter the value of a 9

b=eval(input(“enter the value of b”)) enter the value of a 1

c=eval(input(“enter the value of c”)) enter the value of a 8

if(a>b): the greatest no is 9

if(a>c):

print(“the greatest no is”,a)

else:

else:

if(b>c):

print(“the greatest no is”,b)

else:

print(“the greatest no is”,c)

 positive negative or zero output

 n=eval(input("enter the value of n:")) enter the value of n:-9

 if(n==0): the number is negative

 print("the number is zero")

 else:

 if(n>0):

 print("the number is positive")

 else:

print("the number is negative")

Inline if:
An inline if statement is a simpler form of if statement and is more convenient ,if we
need to perform simple task.

Syntax: do task A if condition is true else do task B

Example:
>>> b=True
>>> a=1 if b else None
>>> a
1
>>> b=False
>>> a=1 if b else None
>>> a
#None

Haseeb
Highlight

Haseeb
Highlight

ITERATION/CONTROL
STATEMENTS/LOOPs:

 state

 while

 for

 break

 continue

 pass

State:

Transition from one process to another process under specified condition with in a
time is called state.

While loop:

 While loop statement in Python is used to repeatedly executes set of
statement as long as a given condition is true.

 In while loop, test expression is checked first. The body of the loop is

entered only if the test_expression is True. After one iteration, the test

expression is checked again. This process continues until the test_expression

evaluates to False.

 In Python, the body of the while loop is determined through indentation.

 The statements inside the while starts with indentation and the first
unindented line marks the end.

Syntax:

Flowchart:

Examples:

1. program to find sum of n numbers:
2. program to find factorial of a number
3. program to find sum of digits of a number:
4. Program to Reverse the given number:
5. Program to find number is Armstrong number or not
6. Program to check the number is palindrome or not

Sum of n numbers: output

n=eval(input("enter n")) enter n

i=1 10

sum=0 55

while(i<=n):

sum=sum+i

i=i+1

print(sum)

Factorial of a numbers: output

n=eval(input("enter n")) enter n

i=1 5

fact=1 120

while(i<=n):

fact=fact*i

i=i+1

print(fact)

Sum of digits of a number: output

n=eval(input("enter a number")) enter a number

sum=0 123

while(n>0): 6

a=n%10

sum=sum+a

n=n//10

print(sum)

Reverse the given number: output

n=eval(input("enter a number")) enter a number

sum=0 123

while(n>0): 321

a=n%10

sum=sum*10+a

n=n//10

print(sum)

Armstrong number or not output

n=eval(input("enter a number")) enter a number153

org=n The given number is Armstrong number

sum=0

while(n>0):

a=n%10

sum=sum+a*a*a

n=n//10

if(sum==org):

print("The given number is Armstrong

number")

else:

print("The given number is not

Armstrong number")

Palindrome or not output

n=eval(input("enter a number")) enter a number121

org=n The given no is palindrome

sum=0

while(n>0):

a=n%10

sum=sum*10+a

n=n//10

if(sum==org):

print("The given no is palindrome")

else:

print("The given no is not palindrome")

For loop:

 for in range:

 We can generate a sequence of numbers using range() function.
range(10) will generate numbers from 0 to 9 (10 numbers).

 In range function have to define the start, stop and step size

as range(start,stop,step size). step size defaults to 1 if not provided.

syntax

Flowchart:

For in sequence

 The for loop in Python is used to iterate over a sequence (list, tuple, string).
Iterating over a sequence is called traversal. Loop continues until we reach the
last element in the sequence.

 The body of for loop is separated from the rest of the code using indentation.

Sequence can be a list, strings or tuples

s.no sequences example output

 R

1. For loop in string for i in "Ramu": A

 print(i) M

 U

 2

2. For loop in list for i in [2,3,5,6,9]: 3

 print(i) 5

 6

 9

 for i in (2,3,1): 2

3. For loop in tuple print(i) 3

 1

https://www.programiz.com/python-programming/list
https://www.programiz.com/python-programming/list
https://www.programiz.com/python-programming/string

Examples:

1. print nos divisible by 5 not by 10:
2. Program to print fibonacci series.
3. Program to find factors of a given number
4. check the given number is perfect number or not
5. check the no is prime or not
6. Print first n prime numbers
7. Program to print prime numbers in range

print nos divisible by 5 not by 10 output

n=eval(input("enter a")) enter a:30

for i in range(1,n,1): 5

if(i%5==0 and i%10!=0): 15

print(i) 25

Fibonacci series output

a=0 Enter the number of terms: 6

b=1 Fibonacci Series:

n=eval(input("Enter the number of terms: ")) 0 1

print("Fibonacci Series: ") 1

print(a,b) 2

for i in range(1,n,1): 3

c=a+b 5

print(c) 8

a=b

b=c

find factors of a number Output

n=eval(input("enter a number:")) enter a number:10

for i in range(1,n+1,1): 1

if(n%i==0): 2

print(i) 5

 10

 check the no is prime or not output

 n=eval(input("enter a number")) enter a no:7

 for i in range(2,n): The num is a prime number.

 if(n%i==0):

 print("The num is not a prime")

 break

 else:

print("The num is a prime number.")

 check a number is perfect number or not Output

 n=eval(input("enter a number:")) enter a number:6

 sum=0 the number is perfect number

 for i in range(1,n,1):

 if(n%i==0):

 sum=sum+i

 if(sum==n):

 print("the number is perfect number")

 else:

 print("the number is not perfect number")

 Program to print first n prime numbers Output

 number=int(input("enter no of prime enter no of prime numbers to be

 numbers to be displayed:")) displayed:5

 count=1 2

 n=2 3

 while(count<=number): 5

 for i in range(2,n): 7

 if(n%i==0): 11

 break

 else:

 print(n)

 count=count+1

 n=n+1

 Program to print prime numbers in range output:

 lower=eval(input("enter a lower range")) enter a lower range50

 upper=eval(input("enter a upper range")) enter a upper range100

 for n in range(lower,upper + 1): 53

 if n > 1: 59

 for i in range(2,n): 61

 if (n % i) == 0: 67

 break 71

 else: 73

 print(n) 79

 83

 89

 97

Loop Control Structures

BREAK

 Break statements can alter the flow of a loop.

 It terminates the current

 loop and executes the remaining statement outside the loop.

 If the loop has else statement, that will also gets terminated and come out of the loop
completely.

Syntax:

break

Flowchart

example Output

for i in "welcome": w

if(i=="c"): e

break l
print(i)

CONTINUE

It terminates the current iteration and transfer the control to the next iteration in
the loop.

Syntax: Continue

Flowchart

Example: Output

for i in "welcome": w

if(i=="c"): e

continue l
print(i) o

 m

 e

PASS

 It is used when a statement is required syntactically but you don’t want any code to
execute.

 It is a null statement, nothing happens when it is executed.

Syntax:

pass

break

 Example Output

 for i in “welcome”: w

 if (i == “c”): e

 pass l

 print(i) c

 o

 m

 e

 Difference between break and continue

 break continue

 It terminates the current loop and It terminates the current iteration and

 executes the remaining statement outside transfer the control to the next iteration in

 the loop. the loop.

 syntax: syntax:

 break continue

 for i in "welcome": for i in "welcome":

 if(i=="c"): if(i=="c"):

 break continue

 print(i) print(i)

 w w

 e e

 l l

 o

 m

 e

 else statement in loops:

 else in for loop:

 If else statement is used in for loop, the else statement is executed when the loop has
reached the limit.

 The statements inside for loop and statements inside else will also execute.

example output

for i in range(1,6): 1

print(i) 2

else: 3

print("the number greater than 6") 4

 5 the number greater than 6

else in while loop:

 If else statement is used within while loop , the else part will be executed when the
condition become false.

 The statements inside for loop and statements inside else will also execute.

Program output

i=1 1

while(i<=5): 2

print(i) 3

i=i+1 4

else: 5

print("the number greater than 5") the number greater than 5

Fruitful Function
 Fruitful function

 Void function

 Return values

 Parameters

 Local and global scope

 Function composition

 Recursion

Fruitful function:

A function that returns a value is called fruitful function.

Example:

Root=sqrt(25)

Example:

def add():

a=10

b=20

c=a+b

return c

c=add()

print(c)

Void Function

A function that perform action but don’t return any value.

Example:

print(“Hello”)

Example:

def add():

a=10

b=20

c=a+b

print(c)

add()

Return values:

return keywords are used to return the values from the function.

example:

return a – return 1 variable

return a,b– return 2 variables

return a,b,c– return 3 variables

return a+b– return expression

return 8– return value

PARAMETERS / ARGUMENTS:

 Parameters are the variables which used in the function definition. Parameters are
inputs to functions. Parameter receives the input from the function call.

 It is possible to define more than one parameter in the function definition.

Types of parameters/Arguments:

1. Required/Positional parameters
2. Keyword parameters
3. Default parameters

4. Variable length parameters

Required/ Positional Parameter:

The number of parameter in the function definition should match exactly with
number of arguments in the function call.

Example Output:

def student(name, roll): George 98

print(name,roll)

student(“George”,98)

Keyword parameter:

When we call a function with some values, these values get assigned to the

parameter according to their position. When we call functions in keyword parameter, the

order of the arguments can be changed.

Example Output:

def student(name,roll,mark): 90 102 bala

print(name,roll,mark)

student(90,102,"bala")

Default parameter:

Python allows function parameter to have default values; if the function is called
without the argument, the argument gets its default value in function definition.

Example Output:

def student(name, age=17): Kumar 17

print (name, age)
Ajay 17

student(“kumar”):

student(“ajay”):

Variable length parameter

 Sometimes, we do not know in advance the number of arguments that will be
passed into a function.

 Python allows us to handle this kind of situation through function calls with
number of arguments.

 In the function definition we use an asterisk (*) before the parameter name to
denote this is variable length of parameter.

Example Output:
def student(name,*mark): bala (102 ,90)

print(name,mark)

student (“bala”,102,90)

Local and Global Scope

Global Scope

 The scope of a variable refers to the places that you can see or access a variable.

 A variable with global scope can be used anywhere in the program.

 It can be created by defining a variable outside the function.

 Example output

a=50

def add():

Global Variable

 b=20
 70

 c=a+b

 print© Local Variable

def sub():

 b=30

 c=a-b 20

 print©

print(a) 50

Local Scope A variable with local scope can be used only within the function .

 Example output

 def add():

 b=20

c=a+b

70

Local Variable

 print©

 def sub():

 b=30 20

c=a-b

 Local Variable

print©

 print(a) error

 print(b) error

 Function Composition:

 Function Composition is the ability to call one function from within another function

 It is a way of combining functions such that the result of each function is passed as the
argument of the next function.

 In other words the output of one function is given as the input of another function is
known as function composition.

Example: Output:

math.sqrt(math.log(10))

def add(a,b): 900

c=a+b

return c

def mul(c,d):

e=c*d

return e

c=add(10,20)

e=mul(c,30)

print(e)

find sum and average using function output

composition

def sum(a,b): enter a:4

sum=a+b enter b:8

return sum the avg is 6.0

def avg(sum):

avg=sum/2

return avg

a=eval(input("enter a:"))

b=eval(input("enter b:"))

sum=sum(a,b)

avg=avg(sum)

print("the avg is",avg)

Recursion

A function calling itself till it reaches the base value - stop point of function
call. Example: factorial of a given number using recursion

Factorial of n Output

def fact(n): enter no. to find fact:5

 if(n==1): Fact is 120

 return 1

 else:

 return n*fact(n-1)

n=eval(input("enter no. to find

fact:"))

fact=fact(n)

print("Fact is",fact)

 Explanation

Examples:

1. sum of n numbers using recursion
2. exponential of a number using recursion

Sum of n numbers Output

def sum(n): enter no. to find sum:10

if(n==1): Fact is 55

return 1

else:

return n*sum(n-1)

n=eval(input("enter no. to find

sum:"))

sum=sum(n)

print("Fact is",sum)

Strings:
 Strings

 String slices

 Immutability

 String functions and methods

 String module

Strings:

 String is defined as sequence of characters represented in quotation marks

(either single quotes (‘) or double quotes (“).

 An individual character in a string is accessed using a index.

 The index should always be an integer (positive or negative).

 A index starts from 0 to n-1.

 Strings are immutable i.e. the contents of the string cannot be changed after it is
created.

 Python will get the input at run time by default as a string.

 Python does not support character data type. A string of size 1 can be treated as
characters.

1. single quotes (' ')

2. double quotes (" ")
3. triple quotes(“”” “”””)

Operations on string:

1. Indexing
2. Slicing
3. Concatenation
4. Repetitions
5. Member ship

 >>>a=”HELLO”

 Positive indexing helps in accessing

indexing >>>print(a[0]) the string from the beginning

 >>>H

 Negative subscript helps in accessing

 >>>print(a[-1]) the string from the end.

 >>>O

 Print[0:4] – HELL The Slice[start : stop] operator extracts

 Slicing: Print[:3] – HEL sub string from the strings.

 Print[0:]- HELLO A segment of a string is called a slice.

 a=”save” The + operator joins the text on both

 Concatenation b=”earth” sides of the operator.

 >>>print(a+b)

 saveearth

 a=”panimalar ” The * operator repeats the string on the

 Repetitions: >>>print(3*a) left hand side times the value on right

 panimalarpanimalar hand side.

 panimalar

 Membership: >>> s="good morning" Using membership operators to check a

 >>>"m" in s particular character is in string or not.

 True Returns true if present

 >>> "a" not in s

 True

 String slices:

 A part of a string is called string slices.

 The process of extracting a sub string from a string is called slicing.

 Print[0:4] – HELL The Slice[n : m] operator extracts sub

Slicing: Print[:3] – HEL string from the strings.

a=”HELLO” Print[0:]- HELLO A segment of a string is called a slice.

Immutability:

 Python strings are “immutable” as they cannot be changed after they are created.

 Therefore [] operator cannot be used on the left side of an assignment.

operations Example output

element assignment a="PYTHON" TypeError: 'str' object does

 a[0]='x' not support element

 assignment

element deletion a=”PYTHON” TypeError: 'str' object

 del a[0] doesn't support element

 deletion

delete a string a=”PYTHON” NameError: name 'my_string'
 del a is not defined

print(a)

string built in functions and methods:

A method is a function that “belongs to” an object.

Syntax to access the method

Stringname.method()

a=”happy birthday”

here, a is the string name.

 syntax example description

1 a.capitalize() >>> a.capitalize() capitalize only the first letter

 ' Happy birthday’ in a string

2 a.upper() >>> a.upper() change string to upper case

 'HAPPY BIRTHDAY’

3 a.lower() >>> a.lower() change string to lower case

 ' happy birthday’

4 a.title() >>> a.title() change string to title case i.e.
 ' Happy Birthday ' first characters of all the

 words are capitalized.

5 a.swapcase() >>> a.swapcase() change lowercase characters

 'HAPPY BIRTHDAY' to uppercase and vice versa

6 a.split() >>> a.split() returns a list of words

 ['happy', 'birthday'] separated by space

7 a.center(width,”fillchar >>>a.center(19,”*”) pads the string with the

 ”) '***happy birthday***' specified “fillchar” till the

 length is equal to “width”

8 a.count(substring) >>> a.count('happy') returns the number of

 1 occurences of substring

9 a.replace(old,new) >>>a.replace('happy', replace all old substrings

 'wishyou happy') with new substrings

 'wishyou happy

 birthday'

10 a.join(b) >>> b="happy" returns a string concatenated

 >>> a="-" with the elements of an

 >>> a.join(b) iterable. (Here “a” is the

 'h-a-p-p-y' iterable)

11 a.isupper() >>> a.isupper() checks whether all the case-

 False based characters (letters) of

 the string are uppercase.

12 a.islower() >>> a.islower() checks whether all the case-

 True based characters (letters) of

 the string are lowercase.

13 a.isalpha() >>> a.isalpha() checks whether the string

 False consists of alphabetic

 characters only.

14 a.isalnum() >>> a.isalnum() checks whether the string

 False consists of alphanumeric

 characters.

15 a.isdigit() >>> a.isdigit() checks whether the string

 False consists of digits only.

16 a.isspace() >>> a.isspace() checks whether the string

 False consists of whitespace only.
17 a.istitle() >>> a.istitle() checks whether string is title

 False cased.

18 a.startswith(substring) >>> a.startswith("h") checks whether string starts

 True with substring

19 a.endswith(substring) >>> a.endswith("y") checks whether the string

 True ends with the substring

20 a.find(substring) >>> a.find("happy") returns index of substring, if

 0 it is found. Otherwise -1 is

 returned.

21 len(a) >>>len(a) Return the length of the

 >>>14 string

22 min(a) >>>min(a) Return the minimum

 >>>’ ‘ character in the string

23 max(a) max(a) Return the maximum

 >>>’y’ character in the string

String modules:
 A module is a file containing Python definitions, functions, statements.

 Standard library of Python is extended as modules.

 To use these modules in a program, programmer needs to import the module.

 Once we import a module, we can reference or use to any of its functions or variables in
our code.

 There is large number of standard modules also available in python.

 Standard modules can be imported the same way as we import our user-defined
modules.

Syntax:

import module_name

Example output

import string

print(string.punctuation) !"#$%&'()*+,-./:;<=>?@[\]^_`{|}~

print(string.digits) 0123456789

print(string.printable) 0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJ

print(string.capwords("happ KLMNOPQRSTUVWXYZ!"#$%&'()*+,-

y birthday")) ./:;<=>?@[\]^_`{|}~

print(string.hexdigits) Happy Birthday

print(string.octdigits) 0123456789abcdefABCDEF

 01234567

Escape sequences in string

Escape Description example

Sequence

\n new line >>> print("hai \nhello")

 hai
 hello

\\ prints Backslash (\) >>> print("hai\\hello")

 hai\hello

\' prints Single quote (') >>> print("'")

 '

\" prints Double quote >>>print("\"")

 (") "

\t prints tab sapace >>>print(“hai\thello”)

 hai hello

\a ASCII Bell (BEL) >>>print(“\a”)

List as array:

Array:

Array is a collection of similar elements. Elements in the array can be accessed
by index. Index starts with 0. Array can be handled in python by module named array.

To create array have to import array module in the program.

Syntax :

import array

Syntax to create array:

Array_name = module_name.function_name(‘datatype’,[elements])

example:

a=array.array(‘i’,[1,2,3,4])

a- array name

array- module name

i- integer datatype

Example

Program to find sum of Output

array elements

import array 10

sum=0

a=array.array('i',[1,2,3,4])

for i in a:

sum=sum+i

print(sum)

Convert list into array:

fromlist() function is used to append list to array. Here the list is act like a array.

Syntax:

arrayname.fromlist(list_name)

Example

program to convert list Output

into array

import array 35

sum=0

l=[6,7,8,9,5]

a=array.array('i',[])

a.fromlist(l)

for i in a:

 sum=sum+i

print(sum)

 Methods in array a=[2,3,4,5]

 Syntax example Description

1 array(data type, array(‘i’,[2,3,4,5]) This function is used to create

 value list) an array with data type and

 value list specified in its

 arguments.

2 append() >>>a.append(6) This method is used to add the

 [2,3,4,5,6] at the end of the array.

3 insert(index,element >>>a.insert(2,10) This method is used to add the

) [2,3,10,5,6] value at the position specified in

 its argument.

4 pop(index) >>>a.pop(1) This function removes the

 [2,10,5,6] element at the position

 mentioned in its argument, and

 returns it.

5 index(element) >>>a.index(2) This function returns the index

 0 of value

6 reverse() >>>a.reverse() This function reverses the

 [6,5,10,2] array.

7 count()

a.count()
4

This is used to count number of
elements in an array

 ILLUSTRATIVE PROGRAMS:

 Square root using newtons method: Output:

 def newtonsqrt(n): enter number to find Sqrt: 9

 root=n/2 3.0

 for i in range(10):

 root=(root+n/root)/2

 print(root)

 n=eval(input("enter number to find Sqrt: "))

 newtonsqrt(n)

 GCD of two numbers output

 n1=int(input("Enter a number1:")) Enter a number1:8

 n2=int(input("Enter a number2:")) Enter a number2:24

 for i in range(1,n1+1): 8

 if(n1%i==0 and n2%i==0):

 gcd=i

 print(gcd)

 Exponent of number Output:

 def power(base,exp): Enter base: 2

 if(exp==1): Enter exponential value:3

 return(base) Result: 8

 else:

 return(base*power(base,exp-1))

 base=int(input("Enter base: "))

 exp=int(input("Enter exponential value:"))

 result=power(base,exp)

 print("Result:",result)

 sum of array elements: output:

 a=[2,3,4,5,6,7,8] the sum is 35

 sum=0

 for i in a:

 sum=sum+i

 print("the sum is",sum)

 Linear search output

 a=[20,30,40,50,60,70,89] [20, 30, 40, 50, 60, 70, 89]

 print(a) enter a element to search:30

 search=eval(input("enter a element to search:")) element found at 2

 for i in range(0,len(a),1):

 if(search==a[i]):

 print("element found at",i+1)

 break

 else:

 print("not found")

Binary search output

a=[20, 30, 40, 50, 60, 70, 89] [20, 30, 40, 50, 60, 70, 89]

print(a) enter a element to search:30

search=eval(input("enter a element to search:")) element found at 2

start=0

stop=len(a)-1

while(start<=stop):

mid=(start+stop)//2

if(search==a[mid]):

print("elemrnt found at",mid+1)

break

elif(search<a[mid]):

stop=mid-1

else:

start=mid+1

else:

print("not found")

Function:
Lambda function (Anonymous Functions)
A function is said to be anonymous function when it is defined without a
name and def keyword.
In python, normal function are defined using def keyword and
Anonymous function are defined using lambda keyword.

Syntax: lambda arguments: expression

Lambda function can have any number of argument but only one
expression.The expression are evaluated and returned.

Example:
>>> a=lambda b: b*2+b
>>> print(a(3))

9
Or
def a(b):

return b*2+b

Part A:

1. What are Boolean values?
2. Define operator and operand?
3. Write the syntax for if with example?
4. Write the syntax and flowchart for if else.
5. Write the syntax and flowchart for chained if.
6. define state
7. Write the syntax for while loop with flowchart.
8. Write the syntax for for loopwith flowchart.
9. Differentiate break and continue.
10. mention the use of pass
11. what is fruitful function
12. what is void function
13. mention the different ways of writing return statement
14. What is parameter and list down its type?
15. What is local and global scope?
16. Differentiate local and global variable?
17. What is function composition, give an example?
18. Define recursion.
19. Differentiate iteration and recursion.
20. Define string. How to get a string at run time.

21. What is slicing? Give an example.

22. What is immutability of string?
23. List out some string built in function with example?
24. Define string module?
25. How can list act as array?
26. write a program to check the number is odd or even.
27. write a program to check the number positive or negative
28. write a program to check the year is leap year or not
29. write a program to find greatest of two numbers
30. write a program for checking eligibility for vote
31. write a program to find sum of n numbers
32. write a program to find factorial of given numbers
33. write a program to find sum of digits of a number
34. Write a program to reverse the given number.
35. Write a program to check the given number is palindrome or not.
36. write a program to check the given number is Armstrong or not
37. how can you use for loop in sequence.
38. how can you use else statement if loops.
39. What is the use of map() function?

Part B:

1. Explain conditional statements in detail with example(if, if..else, if..elif..else)
2. explain in detail about operators in detail
3. Explain in detail about iterations with example.(for, while)
4. Explain the usage of else statements in loops
5. Explain in detail about using for loop in sequence.
6. Explain in detail about string built in function with suitable examples?
7. Explain about loop control statement(break, continue, pass)
8. Breifly discuss about fruitful function.
9. Discuss with an example about local and global variable
10. Discuss with an example about function composition
11. Explain in detail about recursion with example.
12. Explain in detail about strings and its operations(slicing,immutablity)
13. Program to find square root of a given number using newtons method
14. program to find gcd of given nnumber
15. program to find exponentiation of given number using recursion

16. program to find sum of array elements.
17. program to search an element using linear search.
18. program to search an element using binary element.
19. program to find factorial of a given number using recursion

